首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2761篇
  免费   252篇
  国内免费   1篇
  2023年   19篇
  2022年   12篇
  2021年   85篇
  2020年   61篇
  2019年   51篇
  2018年   87篇
  2017年   64篇
  2016年   139篇
  2015年   161篇
  2014年   172篇
  2013年   225篇
  2012年   250篇
  2011年   229篇
  2010年   143篇
  2009年   111篇
  2008年   174篇
  2007年   172篇
  2006年   129篇
  2005年   131篇
  2004年   112篇
  2003年   106篇
  2002年   79篇
  2001年   22篇
  2000年   13篇
  1999年   21篇
  1998年   20篇
  1997年   16篇
  1996年   12篇
  1995年   17篇
  1994年   10篇
  1993年   12篇
  1992年   14篇
  1991年   7篇
  1990年   15篇
  1989年   10篇
  1988年   7篇
  1987年   6篇
  1986年   14篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1977年   4篇
  1974年   3篇
  1973年   6篇
  1971年   4篇
  1970年   6篇
  1969年   3篇
  1958年   3篇
  1944年   3篇
排序方式: 共有3014条查询结果,搜索用时 15 毫秒
31.
32.
Of the total adenylate-kinase activity in 10-d-old barley and wheat leaves, 40–50% is localised in the chloroplasts, while in mature spinach leaves 50–70% of the enzyme is chloroplastic. The extra-chloroplastic adenylate-kinase activity is associated with the mitochondria, very little, if any, is freely soluble in the cytoplasm. The adenylate pool of the cytoplasm could have access to adenylate-kinase activity in the intermitochondrial space because of the free permeation of adenylates across the outer mitochondrial membrane. Thus the adenylate pool of the cytoplasm could be subject to adenylate-kinase equilibrium. The mitochondrial adenylate kinase appeared to the localised exclusively in the intermembrane space.  相似文献   
33.
Aim Gondwanan lineages are a prominent component of the Australian terrestrial biota. However, most squamate (lizard and snake) lineages in Australia appear to be derived from relatively recent dispersal from Asia (< 30 Ma) and in situ diversification, subsequent to the isolation of Australia from other Gondwanan landmasses. We test the hypothesis that the Australian radiation of diplodactyloid geckos (families Carphodactylidae, Diplodactylidae and Pygopodidae), in contrast to other endemic squamate groups, has a Gondwanan origin and comprises multiple lineages that originated before the separation of Australia from Antarctica. Location Australasia. Methods Bayesian (beast ) and penalized likelihood rate smoothing (PLRS) (r 8s ) molecular dating methods and two long nuclear DNA sequences (RAG‐1 and c‐mos) were used to estimate a timeframe for divergence events among 18 genera and 30 species of Australian diplodactyloids. Results At least five lineages of Australian diplodactyloid geckos are estimated to have originated > 34 Ma (pre‐Oligocene) and basal splits among the Australian diplodactyloids occurred c. 70 Ma. However, most extant generic and intergeneric diversity within diplodactyloid lineages appears to post‐date the late Oligocene (< 30 Ma). Main conclusions Basal divergences within the diplodactyloids significantly pre‐date the final break‐up of East Gondwana, indicating that the group is one of the most ancient extant endemic vertebrate radiations east of Wallace’s Line. At least five Australian lineages of diplodactyloid gecko are each as old or older than other well‐dated Australian squamate radiations (e.g. elapid snakes and agamids). The limbless Pygopodidae (morphologically the most aberrant living geckos) appears to have radiated before Australia was occupied by potential ecological analogues. However, in spite of the great age of the diplodactyloid radiation, most extant diversity appears to be of relatively recent origin, a pattern that is shared with other Australian squamate lineages.  相似文献   
34.
35.
36.
Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population‐dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non‐hunted population of high‐arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual‐based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age‐specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green‐up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non‐breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density‐dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density‐dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population‐dynamic responses to global change in migratory species.  相似文献   
37.
38.
Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time‐consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome–environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described “islands of differentiation,” and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.  相似文献   
39.
Wetlands Ecology and Management - Plants play an important role in fishpond littorals, but little is known about factors influencing their presence and growth patterns. We surveyed vegetation of...  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号